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Addendum

A preliminary version of this paper was presented at the
meeting of the American Educational Research Association in New

York, April 5, 1977.
rratum

All instances of the "[' " (integral sign) should be replaced with
"#" (lower case Greek delta) throughout the entire paper.
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USING STEIN'S ESTIMATOR TO PREDICT UNIVERSE SCORES
FROM OBTAINED SCORES

\E:/The purpose of this paper is to introduce and apply a recently
developed statistical method for estimating true (population) scores
from observed (sample) scores. Provided that at least three scores
are available, this method overall will give more accurate true score
estimates than the individual maximum likelihood estimates (MLE),
regardless of the true abilities of the examinees (Efron & Morris,
1977). The method can be used without knowledge of the (Bayesian)
prior distribution, and normality of the true scores being estimated
need not be assumed. The theoretical and practical implications of
the method extend beyond psychological measurement to the very founda-
tions of statistical inference and have caused some tumult in that dis-

cipline during the past decade. ‘f;;\\\\

o

HISTORICAL OVERVIEW™

For the Gaussian distribution, the average is the best estimator
of the true mean, 8. The average is said to be "unbiased" because no
single value of 8 is favored over any other value. That is, the ex-
pected value of the average, X, equals the true value of 6, regardless
of the value of 8. How many unbiased estimates of © are there? An
infinite number. But, none of them estimates 6 perfectly. The expected
squared error of estimation for the average is lower than that for any
other linear or nonlinear and unbiased function of the data.

A departure from this classical approach assumes that unbiased esti-
mates of & are not the only methods by which to infer population_values.
For example, cther possible estimates of 6 could be the median, x/2, 2x,
the mode, etc. All such estimators can be compared through a risk func-
tion, which is the expected value of the squared error for every possible
value of 8. Plots of risk functions show that there is no estimator
with a risk function that is everywhere lower than the risk function of
the average, X, provided that a single mean is being estimated. But in
the more general case, a score is available from each of many examinees
who have taken a test, for example, and it is the true score of each
examinee that is to be inferred. Thus, the MLE is merely a specific
case of the more general situation where the mean scores (8's) are
sought for each examinee.

Theoretical work conducted by Stein (1955) and by James and Stein
(1961) concentrated on estimating several unknown means, through methods
other than maximum likelihood estimation. The authors assumed that the
means are independent of each other and that the goodness of various
estimators can be assessed by a risk function: the sum of the expected
values of the squared errors of estimation for all of the individual




means. Also, it is not necessary to assume that the means being esti-
mated come from normal distributions. What James and Stein proved is
that when three or more means (6 values) are being estimated, it is a
less than optimal solution ("inadmissible") to estimate each © from its
own average. That is, estimation rules can be found with smaller total
risk regardless of the values of the true means (8's) for each examinee.
As Efron and Morris (1975) express this accomplishment:

Charles Stein showed that it is possible to make a uniform
improvement on the maximum likelihood estimate (MLE) in
terms of total squared error risk when estimating several
parameters. . . . This achievement leads immediately to a
uniform, nontrivial improvement over the least squares
(Gauss-Markov) estimators for the parameters in the usual
formulation of the linear modei (p. 311).

THE STEIN ESTIMATOR

The following discussion serves as an introduction to the Stein
L 92,...9k, k 2 3, and
that for each 8 we observe an independent normal variate x, with mean

i
= 91. and variance Var

estimator. Assume that we have k parameters ©

Eexxx oi(xi) = 1. Note that each X, might be the

mean of n independent observations Y \n(Oi. 02). Then x‘Nn(Oi. 02/n),

1)
and a change of scale transforms 0 /n to the more convenient value of

1. Therefore, the above assumptions often occur as a reduction from

more complicated situations to this canonical form.

The primary objective for applying the set of estimation rules is

to estimate the unknown vector of means 3, 3 s (01, ] ....Ok). The

2
performance of an estimation rule is assessed by computing the sum of

squared component errors that is the squared error loss for that esti-
mation rule. If | = (IX' fz.... fk) is an estimation rule, where f‘
is the estimate of 9‘. then the squared error loss £(3. 7) is defined

- > N 2
as L(8, D) = : (f1 0‘) .

"X

1

In the case of the maximum likelihood estimator, or the sample
mean, denoted by J° (X), J° (X = ([, [500,...0(0) = (xee.x),




: - - &> b 0 > > > k
there is a constant risk, R, with R(@, } (X)) = R(€, X) = E I

2 1im1
" indicates the expectation over the dis-
ind N(Oi' 1) introduced above. Observe that Eo(xi - ui)z

(xi - 0‘)2 = k. (Note that E

tribution xi|91 )

= ] for each 1, 1 = 1,...k.)

The Stein estimator may be used to estimate ©. Define the Stein
; ) R X, > . 1.2
estimator, 1 (X) = (10, S300,.../, (%, k 23, as follows:

.-

1 - - (k - 2)
r e 3 AR =& o
Ji(X) E .xi+(1 s )(u1 “1"

where U = (ui....uk) represents an initial guess at the true mean, 3,

and § is defined by § = X(x) - u))z. This estimator thus has risk

» > 14 4
rR(8, TH(x)) = £,

s MM X

P 2
7y b -en? <k - (k= 2) 3
k=-2+ L (0i - ui)2
i=1 %

for all @. If ®, = i for all i, the risk is 2, which compares quite

favorably to k obtained for the sample mean. In any event, the risk

—

for the Stein estimator is less than that for the maximum likelihood

estimator. A discussion of how the risk for the Stein estimator was

obtained is presented in the last section of this paper.

The Stein estimator has a very natural interpretation in an empiri-

cal Bayes context. If the 0i themselves are a sample from a prior dis-
tribution, 0i i:d N(ui' 12), i = 1...k, then the Bayes estimate of 0i

-
is the 2 poeteriori mean of 9‘ given the data, and fi(xi) is defined by

o 1
[ (=) = l:tiilxi o P (1 - 1_:—17) (x, = ¥y

In the empirical Bayes situation, 12 is unknown, but it can be

estimated because marginally the X, are independently normal with means

k
y, and §$ = § (x, - u )2 (1 + 12) xz, where x: is a chi-square distrib-
i =1 3 3 k

ution with k degrees of freedom. Given that k 2 3, the unbjiased estimate

R AR
S 1+ 12 1s available.

E




: Substituting §=12 for the unknown I—%—;? in the Bayes estimate

S
Ix results in ui + (1 . ; 2) (:i - ui). which is the Stein estimator.

Predicting Batting Averages Using the Stein Estimator

The following example is adapted from Efron and Morris (1975, i
1977). Batting averages for major league baseball players, based upon
their first 45 times at bat, were obtained. The objective was to pre-
dict each player's batting average for the remainder of the season. A
cutoff after the first 45 times at bat was chosen because that number
was large enough to insure a satisfactory approximation to the binomial
distribution by the normal distribution and because the vast majority
of "at bats" for the season would be estimated. The model assumes that
hits occur according to a binomial distribution with independence be-
tween players. (Requiring the same number of trials for all players,

n = 45, assures egual variances; however, the Stein estimator can also
be used when variances are unequal. See Efron and Morris, 1975.)

Let Yi be the batting ave:rige of player i, { = 1,...k (k = 12)
after the first 45 times at bat. Assume that nY, ‘:d Bin(n, p),
1 =1,...12, where Py is the true season batting average, i.e.,

- 4
EY, = p,. &

Because the variance of Yi depends upon the mean, the aré-sin

transformation for stabilizing the variance of a binomial distribution
is applied: xi = !‘5
be shown that this transformation results in xt having nearly unit

(Yi)‘ where fn(y) = nsarc-uin(2y = 1)« It can
variance independent of Py-

The mean 9i of x, is given by 01 = fn(pi)' Values of Yi' Pye xi.

i
T Ii. and p, are listed for players 1 through 12 in Table 1. Batting
averages for the first 45 times at bat are listed in column 1. FEach

L]

player received from 270 to 590 additional "trials" during the season.
The batting averages for this seasonal trial number are listed in
column 2. Recall that the objective here is to predict each player's
column 2 ("true," "population") valve using the initially obtained

column 1 ("sample”™) value.

*




Table 1

Example Using Batting Averages From 12 Players

(1) (2) (3) (4) (5) (6) 1

% Py g R I: Py

.400 .346 ). 28 -2.10 -2.49 .319
.378 .298 1,66 -2.79 -2.60 311
.356 .276 -1.97 -3.11 -2.71 .303
.333 .222 -2.28 -3.96 -2.82 .296
.311 .270 -2.60 -3.20 -2.93 .287
.289 .263 -2.92 -3.32 -3.03 .283
244 .269 -3.60 -3.23 -3.26 .265
.222 .303 -3.95 -2.71 -3.40 .258
.222 .264 -3.95 -3.30 -3.40 .258
.222 .226 -3.95 -3.89 -3.40 .258
.200 .285 4,32 -2.98 -3.53 .249
.178 .316 -4.70 -2.53 3,66 .241

Note. Listing of the MLE Scores and Estimated Universe Scores (columns
1 and 2), Score Transformations (columns 3, 4, and 5), and the
Estimated Universe Score from using Stein's estimator (column 6).

The x values obtained upon application of the arc-sin transforma-
tion to the column 1 batting averages (observed scores) are shown in
column 3. Similarly, the 01
transformation to the column 2 batting averages are shown in column 4.

The Stein estimator values that estimate the 0‘ are shown in column 5,

values obtained by applying the arc-sin




and the values obtained upon retransformation via the arc-sin trans-
formation are given in column 6. The following calculations are exam-
ples of the type of computations required. Note that the computations

are not at all complex.

b FOr i = 2, £ (¥,) = 45"arc-sin(2(.378) - 1) = -1.66. Therefore,

x, = ~1.66, and is entered in column 3. Similarly, 02 - f”(pz) =

7 455arc-sin (2(.298) - 1). This value is given in column 4. Values
fOFr % .; X _5¢0:%8 and 8_, @ .9 are obtained through similar

1 3 12 1 kel T
substitutions.

The basic equation for the Stein estimator fi. which allows us to
estimate the ith component of @, is slightly different from the expres-
sion introduced previously. We estimate the initial guess | = ui/k
by X = le k, which shrinks all x, toward X. The resulting estimate
of the ith component Ul of ® is given by

1

f:(;) - X + (1 - - 3) (x1 - X), where V = I(x, - §)2, and k - 3 =

v i

(k = 1) - 2, because one parameter is estimated.

In the empirical Bayes case, the appropriateness of this formula-
K = 3

1 o

the unbiased estimate for I e Therefore, in the case of the exam-

ple data provided in Table 1,

tion follows if X is used as the unbiased estimate for i and as

(=1.35) +...+ (-4.70)
12

X = zxx/x - -3.10.

rhe value for X may in turn be used to compute V:

- X)° = (-1.35 - (3.10))2 +ioet (~4.70 - (-3.10))2 = 13.81.

e —
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The Stein estimates for 91.. are derived by substituting the

.9
12
obtained values for X and V in the computational equation:

12 - 3

13.81

Tt (X) = =3.10 + ( -

) (x1 = («3.10)) = .350)(i - 2.02.

For example, fi

the values for I;....Iiz are listed in column 5 of Table 1. These values

are finally retransformed to obtain the estimates of the "true score"

(X) = .350(-1.35) - 2.02 = -2.49. This value and

average for each player in column 6.

The total squared prediction error for fl(i) is defined as
i 2 1 2 ; . ;
(/] = 8))7 #cuos (f12 - 8,,)" = 4.040. This value is obtained by
subtracting the column 4 value from the column 5 value for each of

the 12 players, squaring the differences, and summing.

In the case of the sample mean, X, the total squared prediction
2
error is defined as E(xi - 91, = 15.135. This value is obtained by
subtracting the column 4 value from the column 3 value for each of the

12 players, squaring the differences, and summing.

The adequacy of Stein's estimator relative to the sample mean may
be determined by computing their relative efficiency. The efficiency

of Stein's estimator relative to the sample mean is defined as

2

T .
u(xi 9‘)

|
z(f‘(x) - 91)

2

In this example, the efficiency is 3.746. In other words, Stein's esti-
mator is nearly four times as "efficient" in predicting "universe" or

i "true" scores from observed (sample) scores as is the MLE.




Limited Translation Estimators

Stein estimators achieve uniformly lower aggregate risk than the
MLE (sample mean), as shown above, but may result in increased risk to
individual components of ©. In particular, the Stein estimator may do

poorly in estimating ® with very large or very small values. Therefore,

even though fl(i) prov:do- better prediction in the aggregate, one may
grossly err with individual components. A desirable compromise would
be to have both good aggregate and good individual prediction, where

improved individual prediction would occur with minimal, if any, loss
in aggregate prediction efficiency. This tradeoff may be achieved by
using "limited translation estimators” that reduce individual risk for

outlying cases and result in minimal loss in aggregate prediction.

Limited translation estimators are introduced to reduce potentially
large mean squared prediction errors associated with individual compo-

nents. Shrinkage of f; values toward x, values is accomplished through

_ i e K i %
the estimate f:, 0SS s<]), of 0 (Here, fg >y and fi = fi 1 f: is

defined to be _as close to fi ssible, so long as it does not differ
- - %
by more than {k liék 3) Dk o 1(s) standard deviations of x

from xl. Dk = l(s) is a constant, obtainéd from a table of limited

translation estimators (Efron & Morris, 1972).

i

Data from the baseball example will now be used to illustrate the
application of limited translation estimators. Notice in Table 1 that
the first player's season average far exceeds the season averages of
the remaining players, an example of an outlying case. In the baseball
example, k = 12, and V was found to be 13.81. Therefore, by obtaining
values for D ( 9) and D, (.8) from the Efron and Morris (1972) table,

~. 9. k-1

1c is found that f (X) may differ by no more than .75 from x  and

f (X) -ay differ by no more .56 from X, . In othor words, by apply-
inq f it means that if If - x, |< .75, then f is retained; but if

./l -y 1> .18, f is set equal to the value differinq from x, by .75.

i




Table 2 contains values for the 12 players for pi. Yi' Q:. P{g.

and p;s. Values for pig and pia Afe obtained as follows. Consider
the first playet,Axx = -1.35, and fi = =2.49; therefore ]xi - fil =
1.14 > .75, so f;’ - -2.10, and [x, - ?il = 1.14 > .56. Thus,

?;8- -1.91. These values are retranslated to obtain é;g = .346, and

p;u = ,360. Notice that Py .346. Therefore, 6;9 provides better

prediction for this individual than ﬁl or 5;8. Also ncte that 5;8 is
closer to the Py value than ﬁi. All ;hree prediction estimates are
closer than the MLE value of Yx = ,400. In the case of the second
player, though, the ﬁ: value became farther removed from Py as the
value of s decreases from 1 to .9 to .8. Therefore, the translations

are increasing the squared prediction error for that player rather

than decreasing it. In the case of the fifth individual, ifi - xxI < .75
o | y .
fx - xx, < .56, so the estimated value remains the same under trans-

lations s = .9 and s = .8. The estimated value will not change until
%1 | g :
Wy - xl, < .33. In this particular example, the translation is in-

creasing the error for many individual components by increasing the dif-

and

ference between the estimate and the true scorw.

>
Recall that the efficiency of Stein's estimator, fI(X). relative

to the sample mean was defined to be
= 3.746.

The efficiency of the limited translation estimator f'g(i) relative to
the sample mean is defined to be

“ 2
‘,(x1 - 9‘)

s o 2

‘-(:.l e‘)

which equals 3.077. Similarly, for f‘a(;) the relative efficiency
equals 2.462. Therefore, in this example fl(;) has the greatest effi-

ciency of the three estimators, fl. f'9. and 2.




Table 2

Batting Averages and Their Estimates

a b

P Y, (x) SOR .°U i Vo S CAE
. 346 .400 (-1.135) 319 (-2.49) .346 (-2.10) .360 (~1.91) 1.14
L2986 .178 (-1.66) .31l (-2.60)  .324 (-2.41)  .338 (~2.22) .94
276 .356 (-1.97) .303 (-2.71) .303 (-2.71) .316 (~2.53) .74
222 .333 (-2.28) 296 (-2.82) .296 (-2.82) .296 (~2.82) .54
.270 L3111 (-2.60) .288 (-2.93) .288 (-2.93) .288 (~2.93) «33
.263 .289 (-2.92) .282 (-3.03) .282 (-3.03) .282 (~3.03) +11
. 269 .444 (-1.60) .465 (-3.28) .265 (-3.28) .265 (~3.28) o3l
. 303 .222 (-3.95) .258 (-3.40) .258 (-3.40) .258 (-3.40) .5%
. 464 .222 (=3.95) .258 (-3.40) .258 (-3.40) .258 (-3.40) D
.426 222 (-13.95) .258 (-3.40) .258 (-3.40) .258 (-3.40) +55
. 285 .200 (-4.32) .249 (-3.53) .246 (-3.57) .234 (-3.76) .79
. 316 .178 (-4.70) .241 (-3.66) .222 (-3.95) .210 (-4.14) 1.04

a 5
(k = 1}k - )
[ = ] D,_, (-9 = .75

b 5
(k -~ 1}(k - 3)
[ XV ] Dk-l('s) .56

Relationship Between Aggregate and Individual Component Mean
Squared Prediction Errors

Prior information about certain examinees can be used to produce
modified estimates of their true or universe scores. In this sense,
the estimator functions as an empirical Bayesian prediction model. This
procedure is most effectively used when the examinee has highly credible
information about specific examinees, which is tantamount to having a
high prior probability, in the usual Bayesian sense. As a result, for

10




these particular examinees, the fit of test scores to "true" scores may
be improved considerably by use of a limited translation estimator.
However, even though the limited translation estimator yields a lower
aggregate squared prediction error for the set of examinees as a whole
than does the MLE (sample mean), it may reduce the overall efficiency
from that of /1 (%) by increasing the mean squared prediction errors for
other examinees in the population. Therefore, overall efficiency, in-
dividual squared prediction error, and prior information available on
some examinees must all be considered simultaneously to determine what
translation, if any, is to be performed.

If there is uniform prior information about all examineeés in the
score distribution, it may be best to maximize the aggregate efficiency.
If no information about true scores is available, it is impossible to
assess which individuals have the greatest squared prediction errors
associated with them. Therefore, a good strategy would be to achieve
maximal aggregate efficiency.

If prior information is concentrated at the extremes of the score
distribution, translations may be applied to bring the predicted score
more in line with the type of score that might be expected, based upon
prior information. 1In accomplishing this reduction, however, one must
evaluate {ts effect on aggregate efficiency. First, the individual
scores can be adjusted until they are in line with prior expectations,
and the resulting aggregate efficiency then evaluated. Or, one can
focus on attaining maximum aggregate efficiency and then notice how
the scores of examinees for whom prior information is avail ble are
influenced by minor translations. A major decision is to determine
at what point score-fitting for particular examinees becomes counter-
productive or inefficient, because minimal additional improvements are
achieved at a high cost to the overall aggregate efficiency.

A cafe in point is when the "true" score does not fall between the
MLE and /1 (%), but when fl(}) falls between the true score and the sample
mean. Shrinking the difference between the samgle mean and fl(i) by ap-
plication of a limited translation estimator, /[ %, actually increases
the squared prediction error for that examinee. The reasoning is the
same when all prior information on an examinee does not fall between the
MLE (sample mean) and /1 (%).

There are also several methodological considerations in relating
obtained and "true” score estimates. Initial trials may underestimate
a "true” score if the learning curve has not yet reached asymptote in
this number of test trials. Likewise, fatigue from the last group of
test items could produce an underestimate of the “"true" score.




Many factors need to be considered in relating observed scores and
true scores, in applying limited translations, in optimizing good indi-
vidual and good aggregate prediction, and in using prior information on
specific examinees productively. The usefulness of Stein's estimator
in behavioral and educational research largely depends upon how well
these considerations are addressed,

SUMMARY

The scientific implications and practical applications of the Stein
estimator approach for estimating true scores from observed scores are
of potentially great importance. The conceptual complexity is not much
greater than that required for more conventional regression models. The
empirical Bayesian aspect allows the examiner to incorporate his/her own
degree of prior information about selected examinees. This approach
allows for a more accurate estimation of true scores, with the corollary
of using fewer test items to achieve those true score estimates. Efron
and Morris (1975) make the point that “"there is little penalty for using
the rules discussed here because they cannot give large total mean squared
error than the MLE. . . ." This assurance may be a sufficient reason for
more careful examination of the utility of the Stein estimator and its
limited translation estimators as they apply to behavioral and social
science research.

12
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